
Computer Networks (2023-2024)
Lab6 introduction

Andrei Belogaev
andrei.belogaev@uantwerpen.be

Table of contents

2

1. Discrete-event simulation

2. NS-3 introduction

3. ALOHA protocol

4. Going through Lab 6

Discrete-event simulation

Simulation vs emulation

4

▪ Emulators (e.g., Mininet):

▪ Replicate the behavior of a specific real system or real hardware

▪ Provide a high level of accuracy and detail

▪ Work in real time

▪ Usually are used for debugging and testing

▪ Simulators (e.g., NS-3)

▪ Model the behavior of a real system or hardware without following the exact procedures

▪ Involve implementation of a simplified representation of real system, e.g., using mathematical
equations

▪ Works in model time

▪ Usually is used for experimentation, optimization and analysis

Events queue

5

Each event is described by:

▪ Identifier

▪ Moment in model time when the event occurs

▪ Sequence of actions (a function) that should be executed when the event occurs

During the execution of function, new events can be created, or some existing events can be deleted.

Event queue:

(ID1, t1, func1) ...

t1 ≤ t2 ≤ t3 ≤ … ≤ tN

(ID2, t2, func2) (ID3, t3, func3) (IDN, tN, funcN)

func1 (args) { ...

 if <condition1> {

 Create event (IDi, ti, funci)

 Delete event (IDj)

 } ...

Data structure?

Events queue

6

Each event is described by:

▪ Identifier

▪ Moment in model time when the event occurs

▪ Sequence of actions (a function) that should be executed when the event occurs

During the execution of function, new events can be created, or some existing events can be deleted.

Event queue:

(ID1, t1, func1) ...

t1 ≤ t2 ≤ t3 ≤ … ≤ tN

(ID2, t2, func2) (ID3, t3, func3) (IDN, tN, funcN)

func1 (args) { ...

 if <condition1> {

 Create event (IDi, ti, funci)

 Delete event (IDj)

 } ...

Data structure?
std::map<t, event>

Terminating event

7

Terminating event is the last event. It finishes the simulation.

After this event:

▪ All remaining events in the queue are deleted

▪ Memory allocated to various objects is cleaned

▪ The data collected during the experiment is processed

Event queue:

(ID1, t1, func1) ...

t1 ≤ t2 ≤ t3 ≤ … ≤ tN

(ID2, t2, func2) (ID3, t3, func3) (IDN, tN, funcN)

Simulation time

Scheduling events

8

To add an event to the event queue, we schedule it to be executed at a certain moment of time.

IDk = Schedule (tk, eventk)

Event queue:

(ID1, t1, func1) ...

t1 ≤ t2 ≤ t3 ≤ … ≤ ti ≤ tk ≤ tj ≤ tN

(ID2, t2, func2) (IDN, tN, funcN)

(IDk, tk, funck)

(IDi, ti, funci) (IDj, tj, funcj) ...

Callbacks - I

9

Desired behavior: a server sends one packet every gap seconds.

class Simulator

Methods:
static ID Schedule (t, func)

Fields:
std::map<t, func> queue

class Server

Methods:
Send () {
 <send packet>;
 Simulator::Schedule (gap, Send);
}

Fields:
Time gap

Class Simulator does not have direct access to class Server. How to call function Send then?

(ID1, t1, func1) ...(ID2, t2, func2) (ID3, t3, Server::Send) ...(IDi, t3+gap, Server::Send)

Callbacks - II

10

Desired behavior: a server sends one packet every gap seconds.

class Simulator

Methods:
static ID Schedule (t, func)

Fields:
std::map<t, func> queue

class Server

Methods:
Send () {
 <send packet>;
 Simulator::Schedule (gap, Send);
}

Fields:
Time gap

Pure C++ style:

std::function<void ()> func = std::bind (&Server::Send, this, packet);
Simulator::Schedule (gap, func);

Callback

<Object*, function*, args>

Callbacks - III

11

Desired behavior: a server sends one packet every gap seconds.

class Simulator

Methods:
static ID Schedule (t, func)

Fields:
std::map<t, func> queue

class Server

Methods:
Send () {
 <send packet>;
 Simulator::Schedule (gap, Send);
}

Fields:
Time gap

NS-3 style:

Simulator::Schedule (gap, &Server::Send, this);
//if args present: Simulator::Schedule (gap, &Server::Send, this, args);

Callback (created internally)

<Object*, function*, args>

Random variables

12

An important property of simulation is the experiment repeatability, i.e., two or more runs of the simulation
model with the same parameters will produce precisely the same results.

To model stochastic processes, where events occur with a certain probability, the pseudorandom number
generator is used. This is an algorithm for generating a sequence of numbers whose properties approximate
the properties of uniformly distributed random numbers. The sequences are determined by an initial value
called seed.

To get the random variable with cumulative distribution F from uniformly distributed random variable U[0, 1],
the inverse CDF method can be used:

Pr 𝐹−1 𝑈 ≤ 𝑥 : 𝑢: 𝐹−1 𝑢 ≤ 𝑥 = {𝑢: 𝑢 ≤ 𝐹(𝑥)}

= Pr 𝑈 ≤ 𝐹 𝑥 : Pr 𝑈 ≤ 𝑢 = 𝑢 when 𝑈 is uniform [0, 1]

= 𝐹(𝑥)

u

x
0

1
F(x)

Smart pointers

13

Pointer 1

Pointer 2

Pointer 3

Reference counter Object

When the reference counter becomes 0, the object is deleted, and the memory is freed.

Ptr<A> a = CreateObject<A> (); //pure C++ style is std::shared_ptr<A> obj (new A ());

Ptr<A> b = a; //+1 reference

a = 0; //-1 reference

b = 0; //-1 reference, the object is deleted

Typical source code of an experiment

14

int main () {
 <reading arguments from command line>
 …
 Simulator::SetSeed (seed); // seed of pseudorandom number generator
 …
 Simulator::Schedule (<first events>);
 Ptr<Object> some_object = CreateObject<Object> (); // can also create events, e.g., in constructor
 …
 Simulator::Schedule (<terminating event>);
 Simulator::Run (); //start iteration over the event queue
 ...
 <analysis of collected statistics>
}

NS-3 introduction

Simulator core

What is NS-3

16

Network simulator-3 (NS-3) – discrete-event simulation platform aimed at investigating various
network protocols.

Open source project, license GNU GPLv2, i.e., allows modifying code for personal purposes, including
for commercial organizations. The NS-3 based products shall be distributed with the same license.

Repository: https://gitlab.com/nsnam/ns-3-dev

How to participate in the project:
• Clone repo into personal gitlab
• Find bag Sor feature-request: https://gitlab.com/nsnam/ns-3-dev/-/issues
• Solve a problem, create merge request and select a reviewer (NS-3 maintainer)
• Participate in discussion https://gitlab.com/nsnam/ns-3-dev/-/merge_requests
• Optional: Google Summer of Code https://www.nsnam.org/wiki/Summer_Projects (stipend from

Google $2700 for medium-size and $5400 for large-size project).

https://gitlab.com/nsnam/ns-3-dev
https://gitlab.com/nsnam/ns-3-dev/-/issues
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests
https://www.nsnam.org/wiki/Summer_Projects

NS-3 applications

17

Maintained external repositories, that implement features not available in NS-3 mainline.
https://www.nsnam.org/docs/contributing/html/external.html
App store: https://apps.nsnam.org/

Examples:
• Direct code execution (DCE) – framework to run real applications and Linux kernel code within NS-3
• NS-3-ai – extension module enabling interaction between NS-3 and Python-based AI frameworks,

such as TensorFlow and PyTorch
• NS-3-gym – a framework that integrates OpenAI Gym and NS-3
• NetSimulyzer – renders the scenario’s topology in 3D, provides configurable charts and logging

https://www.nsnam.org/docs/contributing/html/external.html
https://apps.nsnam.org/

NS-3 documentation

18

Tutorial: https://www.nsnam.org/docs/tutorial/html/

Manual: https://www.nsnam.org/docs/manual/html/index.html

Doxygen: https://www.nsnam.org/doxygen/

Other resources: https://www.nsnam.org/documentation/

https://www.nsnam.org/docs/tutorial/html/
https://www.nsnam.org/docs/manual/html/index.html
https://www.nsnam.org/doxygen/
https://www.nsnam.org/documentation/

Event queue

19

Class Simulator

• Scheduling:
 Simulator::Schedule (Time delay, MEM func_ptr, OBJ obj_ptr, args)
 For example:
 EventId event = Simulator::Schedule (Seconds (12), &SocketWriter::Write, socketWriter, 10)

• Cancel event:
 Simulator::Cancel (EventId event) or EventId::Cancel ()

• Terminating event, start and stop simulation
 Simulator::Stop (Time simtime), Simulator::Run (), Simulator::Destroy ()

Model time

20

Class Time

• Represented by a 64-bytes integer variable (uint64_t);

• The time resolution can be set before we call Simulator::Run
 Time::SetResolution (unit), by default nanoseconds;

• Special functions to create objects of type Time and units convesion:
 Seconds (1), MilliSeconds (100), t.GetSeconds (), t.GetMilliSeconds ();

• Arithmetic operations with Time objects:
 operator +, -, +=, -=, * (by a number), <, >, <=, >=, ==

Base class object

21

All child classes get:

• Smart pointers support

• Object aggregation

• System of attributes

Example:

Class A : public Object {…};

Создать объект:

Ptr<A> a = CreateObject<A> ();

The direct call of operator new should never be used!

Base class SimpleRefCount

Base class ObjectBase

Object aggregation

22

Allows objects storing pointers to other objects.

An object can store at most one pointer to an object of a particular type.

Example:

Ptr<Node> node = CreateObject<Node> ();

Ptr<MobilityModel> mobility = CreateObject<MobilityModel> ();

node -> AggregateObject (device);

…

Ptr<MobilityModel> mobility = node -> GetObject<MobilityModel> ();

Vector position = mobility -> GetPosition ();

System of attributes - I

23

Example:

TypeId DropTailQueue::GetTypeId (void) {

static TypeId tid = TypeId ("ns3::DropTailQueue") // string identifier

.SetParent<Queue> () // base class (used for conversion)

.AddConstructor<DropTailQueue> () // constructor (used by object factories)

.AddAttribute ("MaxPackets", // string attribute identifier

"The maximum number of packets accepted by this DropTailQueue.", // text description

UintegerValue (100), // default value

MakeUintegerAccessor (&DropTailQueue::m_maxPackets), // reference to the field of the class

MakeUintegerChecker<uint32_t> ()); // checker for the attribute value

return tid;

System of attributes - II

24

Creation of new objects and setting their attributes:

• Using SetAttribute:

 ptr = CreateObject<DropTailQueue> ();

 ptr-> SetAttribute(" MaxPackets ", UintegerValue (60));

• Using object factory:

 ObjectFactory factory;

 factory.SetTypeId ("ns3::DropTailQueuel")

 factory. Set ("MaxPackets ", UintegerValue (60));

 ptr = factory.Create ();

• Setting attribute default value:

 Config::SetDefault ("ns3::DropTailQueue::MaxPackets", UintegerValue (60));

Random variables - I

25

Pseudorandom number generator creates sequence X(seed) = {x1, x2, …, xN}, N ~ 3.1×10^57.
Different seed values do not guarantee that sequences X(seed1) и X(seed2) do not overlap.

To conduct statistically independent experiments:
• fixed seed
• different runs (./ns3 –run “experiment –RngRun=…”)

x1 x2 … xK xK+1 xK+2 … x2K … x(M-1)*K+1 x(M-1)*K+2 … xN

M ~ 2^64 independent streams

x1 x2 … xL xL+1 xL+2 … x2L … x(P-1)*L+1 x(P-1)*L+2 … xK

P ~ 2.3×10^15 runs, each contains L ~ 7.6×10^22 numbers

Random variables - II

26

For each random variable, NS-3 assigns streams sequentially.
Rus is selected according to global variable g_rngRun.

Example: exponential random variable, CDF 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥

Ptr<ExponentialRandomVariable> x = CreateObject<ExponentialRandomVariable> ();

x->SetAttribute (“Mean”, DoubleValue (mean)); // mean = 1 / 𝜆

double gap = x->GetValue (); // -mean * ln(U[0, 1])

Main abstractions

27

• Node: basic computing device, is located at a certain position and can have a mobility
pattern.

• NetDevice: mimics the network interface card (NIC), covers both hardware and software
driver.

• Channel: models the communication channel. For example, 2 nodes with installed
WifiNetDevice can communicate via wireless WifiChannel.

• Application: responsible for traffic generation.

• Packet: a piece of data, at any level of the protocol stack we can add or remove headers.

Protocol stack

28

NS-3 modules

29

• core: event queue, model time, random variables, attributes, etc.

• network: node, NetDevice, packet, channel, address

• bridge: switch, bridge

• internet: IP, TCP, UDP, ARP, ICMP, other internet protocols

• internet-apps: ping, traceroute, DHCP, radvd

• mobility: nodes’ positions allocations, mobility models

• propagation: signal propagation (attenuation, delays)

• applications: various applications

• Various technologies: wifi, lte, csma (Ethernet), etc.

Other modules (e.g., some routing protocols)

30

TracedCallback<int, double> m_c;
void foo () {…, m_c (x, y); ...}

void handler (int, double) { ...}

Class A

Class B

void handler (int, double) { ...}

Class C

static void handler (int, double) { ...}

Ptr<A> a = CreateObject<A> ();
Ptr b = CreateObject ();
a ->TraceConnectWithoutContext (“MyTrace”, MakeCallback(&handler));
a ->TraceConnectWithoutContext (“MyTrace”, MakeCallback(&B::handler, b));

Tracing - I

Tracing - II

31

TypeId
PacketSink::GetTypeId (void) {
 static TypeId tid = TypeId ("ns3::PacketSink")
 .SetParent<Application> ()
 .AddConstructor<PacketSink> ()
 ...
 .AddTraceSource ("Rx", "A packet has been received",
 MakeTraceSourceAccessor (&PacketSink::m_rxTrace))
 ;
 return tid;
}

TracedCallback<Ptr<const Packet>, const Address &> m_rxTrace;

void PacketSink::HandleRead (Ptr<Socket> socket) {
 Ptr<Packet> packet;
 while ((packet = socket->RecvFrom (from))) { ... m_rxTrace (packet, from); …}

scenario.cc

void
ReceiveTrace (Ptr<const Packet>,
const Address&) {
 RcvPktCount++;
}

packet-sink.cc

32

scenario.cc

void
ReceiveTrace (Ptr<const Packet> pkt, const Address & addr) {
 RcvPktCount++;
}

int main (int argc, char *argv[]) {
 Ptr<PacketSink> myObject = CreateObject<PacketSink> ();
 myObject->TraceConnectWithoutContext ("Rx", MakeCallback(&ReceiveTrace));
}

Tracing - III

Going through Lab 6

	Slide 1: Computer Networks (2023-2024) Lab6 introduction
	Slide 2: Table of contents
	Slide 3: Discrete-event simulation
	Slide 4: Simulation vs emulation
	Slide 5: Events queue
	Slide 6: Events queue
	Slide 7: Terminating event
	Slide 8: Scheduling events
	Slide 9: Callbacks - I
	Slide 10: Callbacks - II
	Slide 11: Callbacks - III
	Slide 12: Random variables
	Slide 13: Smart pointers
	Slide 14: Typical source code of an experiment
	Slide 15: NS-3 introduction
	Slide 16: What is NS-3
	Slide 17: NS-3 applications
	Slide 18: NS-3 documentation
	Slide 19: Event queue
	Slide 20: Model time
	Slide 21: Base class object
	Slide 22: Object aggregation
	Slide 23: System of attributes - I
	Slide 24: System of attributes - II
	Slide 25: Random variables - I
	Slide 26: Random variables - II
	Slide 27: Main abstractions
	Slide 28: Protocol stack
	Slide 29: NS-3 modules
	Slide 30
	Slide 31: Tracing - II
	Slide 32
	Slide 33: Going through Lab 6

