Computer Networks Lab
introduced for

‘Computernetwerken’
by Andrei Belogaev

Name 1
Name 2
Group groupID

May 25, 2023

Introduction

Before diving into this computer networks lab course, it is useful to present some conventions
first. Keep in mind that these conventions are introduced to make all of our lives easier. In
case of problems, it is easier to have a look at a lab setup if everyone sticks to the same rules.

6.1 Practical Arrangements

Part 1. Virtual Machine with NS-3
Getting the VM

We provide a Virtual Machine with an Ubuntu variant and NS-3 installed. You can download
this image from https://student.idlab.uantwerpen.be/computernetwerken/. There are two
distinct VMs available: one for running on Intel-based computers (“Computernetwerken-AMD64”),
and one for running on Apple silicon (“Computernetwerken-ARM”).

If you are using a computer running on Intel architecture, we suggest you use Virtualbox (https:
//www.virtualbox.org/) for running your Virtual Machine. After installing Virtualbox, set up your
machine as follows:
1. Download and open the Computernetwerken-AMD64.ova file.
2. You should now see the VirtualBox Import Appliance.
3. Click the Import button, and the Virtual Machine is imported in Virtualbox. This can take a
few minutes.

When you are using a machine running on Apple silicon, A VM is provided that has been made
with the “UTM” virtualisation software. UTM is freely downloadable from https://getutm.app. If
your are using Apple silicon, set up your machine as follows after installing the UTM appliance:

1. Download and open the Computernetwerken-ARM.utm.zip file.

2. Unpack the zip file.

3. You should now see the UTM Appliance.

4. Double-click the Computernetwerken-ARM.utm file to import it into UTM.

Now you should be able to start your virtual machine. The login is computernetwerken, and the
password is mvkbjin (from the Dutch phrase “Met veel kabels bouw je 1 netwerk”).

https://student.idlab.uantwerpen.be/computernetwerken/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://getutm.app

Working with Git

For version control maintenance, the NS-3 project relies on Git (https://git-scm.com/book/),
a powerful and widely used distributed version control system. Version control is essential for
tracking changes in files over time, allowing easy retrieval of specific versions later on. When
working with Git, each file in your working directory can be classified as either tracked or un-
tracked. Tracked files are those that Git monitors and maintains a history of their modifications,
while untracked files are not managed by Git.

One of the key concepts in Git is the notion of a revision. A revision represents the state of the
entire project at a specific point in time and includes all the tracked files within the project. To
view the revision history of the NS-3 project or any Git repository, you can navigate to the root
directory of the project ~/ns3-student, and execute the following command:

| git log

Running this command will display a list of commits, each representing a specific revision of the
project. The commit history includes information such as the commit hash (a unique identifier),
the author, the date and time of the commit, and an associated commit message that describes
the changes made in that revision. Using the commit hash, you can easily revert the whole project
to a certain version with command

| git checkout <commit_hash>

If we modify a tracked file, Git changes the status of this file to modified. As an example, you can
add your name into the list of authors ~/ns3-student/AUTHORS. After that, check the status of
the project with the following command:

| git status

This command will show you that the file AUTHORS is modified. To see the difference between
the project’s current version and the one corresponding to the last commit, you can use the
command

| git diff

Running this command from the project root directory will show you the differences for all the
tracked files. Since we modified only one file, we see the information about this file (cf., Fig. 6.1):

To see the difference for a particular file, you can run:
| git diff AUTHORS

It might happen, that you need the original version of the file, but you do not want to loose the
changes that you made. Then, you can “hide” the changes with the command

| git stash -- AUTHORS

https://git-scm.com/book/

diff ——git a/AUTHORS b/AUTHORS
index 4b5b76c02..8be52e622 100644
——— a/AUTHORS

+++ b/AUTHORS

Theodore Zhang (harryzwh@gmail.com)
Dizhi Zhou (dizhi.zhou@gmail.com)

Tolik Zinovyev (tolik@bu.edu)
Tommaso Zugno (tommasozugno@gmail.com)

hax@kartik (GCI 2019)
howie (GCI 2019)
InquisitivePenguin (GCI 2019)

Figure 6.1: Git diff example.

If you run again the commands diff and status, you will see that there are no changes in the
project. However, these changes are not lost — they are safely stored by Git. Moreover, you can
have multiple changes that are stored in a stash list. To see the entries of the list, you can run

| git stash list

After executing this command, you will see the only entry in the list, with label stash@{0}. To see
the content of this stash, you can run

| git stash show -p stash@{0}
To reapply the changes, run
| git stash apply stash@{0}

If you run the commands diff and status, you will see that the file AUTHORS is again modified.
Note that the entry is not deleted from the stash list. To delete this entry, run

| git stash drop stash@{0}

Sometimes you need to completely revert the changes that you have made in a particular file. To
return the file AUTHORS to its original version corresponding to the latest commit, you can run:

| git checkout -- AUTHORS

To completely revert all changes in all tracked files, you can run from the project root directory
the following command:

| git checkout .

Be careful with the last command! After executing it, you lose all the changes that you have
made.

6.2 NS-3: Introduction

In this lab, you will acquaint yourself with the NS-3 simulation platform. Using this model, you will
simulate two medium access control (MAC) layer protocols, Aloha and DCF, which specify how
multiple devices of the same wireless network can access the medium. The modification of the
latter one is used in modern wireless local area networks that we all know under the name Wi-Fi.

Part 1. Basics of NS-3

NS-3 is a discrete-event network simulator, targeted primarily for research and education use.
This is a free open source software written in the C++ programming language. Using NS-3, you
can conduct experimental studies on different communication technologies and network topolo-
gies. It contains implementations of protocols that are parts of many commonly used telecom-
munication technologies, for example, Wi-Fi and LTE/5G. The NS-3 repository can be accessed
at https://gitlab.com/nsnam/ns-3-dev/, all the information and documentation can be found
athttps://www.nsnam.org/.

It is important to understand the difference between emulation and simulation: Mininet is a net-
work emulator, while NS-3 is a simulator. Emulators work in real time and precisely mimic the
behavior of real hardware and software in a real environment. In contrast, simulators maintain
their own simulation clock and do not precisely follow all the procedures that occur in real de-
vices and software. However, they approximate the environment and the devices behavior in an
efficient way so that they provide a good accuracy of the experiment outcomes. For example,
NS-3 does not emulate all operation system (e.g., Linux) procedures. It also does not emu-
late the signal generation and transmission over the wireless channel, but uses mathematical
equations to estimate the error probability. Another very important feature provided by simula-
tors is the experiment repeatability. It means that two or more runs of the simulation model with
the same parameters will produce precisely the same results. Any randomness in a simulation
model occurs due to the use of pseudorandom numbers to generate a certain event (see im-
plementation details at https://www.nsnam.org/docs/manual/html/random-variables.html),
e.g., error during data transmission event with a known probability obtained from an equation.

Exercise 1: Building and running NS-3

This exercise walks you through the steps of building NS-3 and running an experiment (see also
NS-3 tutorial https://www.nsnam.org/docs/tutorial/html/). The exercise is conducted on
the virtual machine.

1. NS-3 uses the Cmake system to build the project. To make the configuration and building
easier for users, it provides a Python wrapper around Cmake, called ns-3, that symplifies
the command-line syntax. You can find this wrapper in the root directory of the project, in
our case it is “/ns3-student. There are several options to control the build, e.g., enabling
tests and examples, debug mode, etc. We will use the default build configuration. This is
done by executing the following command:

|% ./ns3 configure

When the command finishes execution, you should see the output in command line similar
to the one on Fig. 6.2.

2. Now we can build the NS-3 project. In directory ~/ns3-student/src we can see many
subdirectories, each of which contains source files for a particular module of NS-3. Since

https://gitlab.com/nsnam/ns-3-dev/
https://www.nsnam.org/
https://www.nsnam.org/docs/manual/html/random-variables.html
https://www.nsnam.org/docs/tutorial/html/

GNU Scientific Library (GSL)

GtkConfigStore

LibXml2 support

MPI Support : OFF (not requested)
ns-3 Click Integration 3

ns-3 OpenFlow Integration

Netmap emulation FdNetDevice

PyViz visualizer

Python Bindings : OFF (not requested)
SQLite support

Eigen3 support

Tap Bridge

Tap FdNetDevice

Tests : OFF (not requested)

Modules configured to be built:
antenna applications bridge
config-store core csma
internet internet-apps
network point-to-point
propagation spectrum stats
traffic—control wifi

Modules that cannot be built:
mpi test

—-- Applying configuration override from: /home/andrbw/ns3-student/.ns3rc

—-- Configuring done

—— Generating done

—— Build files have been written to: /home/andrbw/ns3-student/cmake-cache

Finished executing the following commands:

mkdir cmake-cache

cd cmake-cache; /usr/bin/cmake -DCMAKE_BUILD_TYPE=default -DNS3_ASSERT=ON -DNS3_LOG=ON -D
NS3_WARNINGS_AS_ERRORS=0FF -DNS3_NATIVE_OPTIMIZATIONS=0FF -G Unix Makefiles .. ; cd ..

Figure 6.2: NS-3 build configuration.

not all of the modules will be required for our experiments, we will not build all of them. The
configuration file ~/ns3-student/.ns3rc is used to configure the list of modules that we
want to build. In our case, we build the following modules:

applications (for simple UDP application that we will use to generate data);
bridge (contains implementation of switch);

config-store (to configure parameters of different modules);

core (the core of the simulator itself);

csma (for ethernet);

internet (Internet Protocol (IP), User Datagram Protocol (UDP), Address Resolution
Protocol (ARP) and other protocols of the internet stack);

internet-apps (for ping);
mobility (for setting positions of the devices);

network (all main simulator abstractions are implemented in this module, i.e., packet,
network device, header, etc.);

propagation (for modeling of the physical channel);
wifi (for implementation of wifi).

Build the project with the following command:

1% .

/ns3 build

Note that NS-3 will build using multiple threads, thus all or most of your CPUs will become
busy. If you want to limit the number of parallel threads, e.g., to 10, use parameter -j:

1% .

/ns3 build -j 10

98%]

98%]

98%]
98%]
[99%1
[29%]

[99%]
[100%]

[100%]
[100%]

[100%]

Finished executing the following commands:

Figure 6.3: NS-3 build execution.

When the command finishes execution, you should see output on command line similar to

the one on Fig. 6.3.

3. To test if the build process was successful, we will run a test experiment. Go to directory
~/ns3-student/scratch/ping-example and execute the following command (the PWD
command returns the full pathname of the current working directory):

|% ./../../ns3 run --cwd=$PWD "ping-example"

Here we use the parameter cwd to specify the working directory, which NS-3 will use for all
relative paths, e.g., to read from files or print to them. By default, the working directory is
the root directory of the NS-3 project. If the experiment is finished correctly, you will see the
same output as in Fig. 6.4. Besides, multiple pcap traces will appear in the directory.

andrbw@andrbw—PC:~/ns3-student/scratch/ping-example$

PING 10.1.1.2 - 56

from
from
from
from
from

l1e.
10.1.1.
l1e.
10.1.1.
0 loale

s

1
o
1
1

bytes of data; 84 bytes including

il

1
ale
1
1

28
: icmp_seq=1 ttl=64 time=0.233

p
2: icmp_seq=2 ttl=64 time=0.233
p
2

icmp_seq=0 ttl=64 time=3.677

: icmp_seq=3 ttl=64 time=0.233

: icmp_seq=4 ttl=64 time=0.233

.1.2 ping statistics ——
5 packets transmitted, 5 received, 0% packet loss, time U4800ms
rtt min/avg/max/mdev = ©/0.6/3/1.342 ms

./ ../../ns3 run —cwd=$PWD "ping-example"
ICMP and IPv4 headers.

ms

ms

ms

ms

ms

Figure 6.4: Output generated by ping-example experiment run.

Exercise 2: Building a simple wired topology and executing the ping command

In this exercise, we will go deeper into the ping-example experiment. Specifically, we will learn
how to create a simple wired topology in NS-3 and execute a ping command to initiate an ex-

change of Internet Control Message Protocol (ICMP) packets between the nodes. The network
setup in Fig. 6.5 and Tab. 6.1 is used in this exercise.

1.

11

switch
L‘==}l{'J

nl n2

n3

Figure 6.5: Wired network topology in ping-example experiment.

End node | IP address
ni 10.1.1.1/24
n2 10.1.1.2/24
n3 10.1.1.3/24

Table 6.1: IP addresses of the hosts.

When we run an experiment in NS-3, we can set its parameters via the command line. For
that, the class CommandLine is used. In experiment ping-example.cc, we have the following
structure of the command line arguments:

CommandLine cmd;

cmd.AddValue("interval", "The time to wait between two packets",
interPacketinterval);

cmd.AddValue("size", "Data bytes to be sent, per—packet", size);

cmd. AddValue ("count", "Number of packets to be sent", count);

cmd. AddValue ("srcldx ",

"End node index that is ping source, e.g., if 1 the src IP is \"10.1.1.1\"",

srcldx) ;

cmd. AddValue ("dstldx ",

"End node index that is ping source, e.g., if 1 the src IP is \"10.1.1.2\"",

dstldx) ;

cmd. Parse (argc, argv);

Each function call AddValue has three arguments: the parameter name, its text description
and reference to a variable to be set. For any experiment, we can always see the description
of its variables by executing the run command with argument PrintHelp:

| % ./../../ns3 run --cwd=$PWD "ping-example --PrintHelp"

If we do not specify any arguments after ping-example, the variables will not be changed.
That means that their default values will be used. If we want to change the value of a
particular variable, we can always specify its value in the run command:

| % ./../../ns3 run --cwd=$PWD "ping-example --count=10"

- Using the description of the command line arguments and the output of the exper-
iment run, describe what the experiment does by default.

"

2.

11
13
15
17

19

21
23

25

To create the devices and connect them with links, we use multiple NS-3 abstractions. The
basic computing device abstraction is called Node. When you want to connect a real non-
simulated computer to a network, you have to use a Network Interface Card (NIC). To control
this hardware, network device software drivers are used. In NS-3, the NetDevice abstraction
is used to cover both the software driver and the simulated NIC hardware. A NetDevice is
“installed” in a Node in order to enable the Node to communicate with other Nodes in the
simulation via Channels. Just as in a real computer, a Node may be connected to more
than one Channel via multiple NetDevices. Just as an Ethernet NIC is designed to work
with an Ethernet network, the CsmaNetDevice is designed to work with a CsmaChannel
and a WifiNetDevice is designed to work with a WifiChannel.

In our experiment, we will use CsmaHelper to create links between pairs of devices. Each
link that we create has 100 Mbps data rate and 50us delay. Since we have three links, in
total we will create 6 NetDevices: 1 installed on each of the end nodes and 3 installed on the
switch device. To enable switch capabilities on a switch node, we also use BridgeHelper.
The following code is responsible for the described procedure:

//create nodes {n1, n2, n3}
NodeContainer endNodes;
endNodes . Create (3) ;

//create switch node
NodeContainer switchNode;
switchNode . Create (1) ;

//set parameters for Ethernet link

CsmaHelper ethernet;

ethernet. SetChannelAttribute ("DataRate", StringValue ("100Mbps")) ;
ethernet.SetChannelAttribute ("Delay", StringValue ("50us"));

//insert Ethernet NICs into nodes and switch

NetDeviceContainer endNodeDevices;

NetDeviceContainer switchDevices;

for (int i = 0; i < 3; i++)

{

NetDeviceContainer linkDevices = ethernet.Install (NodeContainer (endNodes.Get (
i), switchNode));

endNodeDevices.Add (linkDevices.Get (0));

switchDevices.Add (linkDevices.Get (1));

}

//Enable switch capabilities on switch interfaces
BridgeHelper bridge;
bridge. Install (switchNode.Get (0), switchDevices);

- If we transmit a 100 bytes packet from node n1 to n2, and node n2 immediately
transmits the same packet back to n1, what will be the round-trip time?

In this experiment, the exact positions of the nodes are not important. For simplicity, we
place all of them to the same point: (0, 0, 0). For that, we use ListPositionAllocator with only
one position in its list. Then, on each installation it will set this position to each node. Since
we do not want the nodes to move, we use ConstantPositionMobilityModel. The following
code is responsible for the described procedure:

A

10

4.

11

13

MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator >

0

//place all nodes at (0, 0, 0)
positionAlloc —>Add (Vector (0.0, 0.0, 0.0));
mobility . SetPositionAllocator (positionAlloc);

// all nodes do not move, i.e., have constant position
mobility . SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility . Install (endNodes) ;

mobility . Install (switchNode);

To enable support of all main internet protocols, we use InternetStackHelper. Then, we use
Ipv4AddressHelper to assign IP version 4 (IPv4) addresses to all nodes.

//install internet protocols
InternetStackHelper internet;
internet.Install (endNodes) ;

//Assign |IP addresses from subnet 10.1.1.0/24

Ipv4AddressHelper ipv4;

ipv4 .SetBase("10.1.1.0", "255.255.255.0");

ipv4 . Assign (endNodeDevices) ;

Ipv4interfaceContainer interfaces = ipv4.Assign(endNodeDevices) ;

Finally, we install the ping tool on one of the nodes (with index srcldx) where we want
to execute the ping command. We set the following parameters: destination IP address,
the size of the ICMP packets, the interval between packets, the number of packets to be
sent (using the parameter “Count”), the start time and the end time of the ping command
execution. We also enable pcap files collection so that we can analyse the traffic captured
on all devices during the experiment.

// Configure ping from node srcldx to node dstldx

PingHelper pingHelper(interfaces.GetAddress (dstldx), interfaces.GetAddress (
srcldx));

pingHelper. SetAttribute ("Interval", TimeValue(interPacketlnterval));

pingHelper. SetAttribute ("Size", UintegerValue(size));

pingHelper. SetAttribute ("Count", UintegerValue(count));

//Install ping tool on source node

ApplicationContainer apps = pingHelper. Install (endNodes.Get(srcldx));
apps. Start (Seconds (1)) ;

apps . Stop (Seconds (50)) ;

//Capture traffic from all interfaces
ethernet. EnablePcapAll ("ping—example") ;

‘ Note that we do not install the ping tool on the receiver side. The tool is responsible for
sending the ICMP echo requests, and output generation after interpreting the echo replies.
However, generation of echo reply on a received echo request is a responsibility of ICMP
protocol itself, so this procedure does not require the ping tool installation.

- How many pcap files will be generated by the experiment? Why?

A

6. The last part is often the same in all experiments. It consists of three commands: Stop, Run
and Destroy. The Stop command creates the terminating event at a specific time moment
that corresponds to the end of simulation. The Run command starts simulation, i.e., starts
processing of the first event in the events queue. Finally, the Destroy command destroys all
the objects that have been created during the experiment.

1 Simulator :: Stop (Seconds (60.0)) ;
Simulator ::Run() ;
3 Simulator :: Destroy () ;

7. Now, when you understand the structure of the experiment, run the experiment with the
following parameter configuration: send 8 ICMP ping packets from node with IP address
10.1.1.3 to node with IP address 10.1.1.1, set interval between packets to 0.5 seconds and
packet size to 56 bytes. Do not modify any source file! Save the program output and the
generated pcap files.

- Which command did you use to run the experiment?

- Look inside the content of each pcap file. Which packets do you see inside them?
Do all the pcap files contain the same packets? Why?

8. Modify the source file of the experiment, ping-example.cc: add function call
ArpCache::PopulateArpCache () right after the IPv4 addresses assignment.

1 Ipv4AddressHelper ipv4;

ipv4 .SetBase("10.1.1.0", "255.255.255.0");
3 ipv4 . Assign (endNodeDevices) ;

Ipv4interfaceContainer interfaces = ipv4.Assign(endNodeDevices) ;
5

ArpCache::PopulateArpCache ();

//Create Ping application and installing on node

Run the experiment from the previous task again with the same parameters. Note that
before running the experiment NS-3 will rebuild the file, because we changed it. Save the
program output and the generated pcap files.

- Is there any difference in program output and pcap files compared to the previous
task? What does the function ArpCache::PopulateArpCache () do to cause such difference?

Exercise 3: Building simple wireless topology and executing the ping command

In this exercise, we will modify the experiment file ping-example.cc. Specifically, we will substi-
tute the wired topology with the wireless one. We will consider an older Wi-Fi wireless technology,
that is standardized as IEEE 802.11a. The newest Wi-Fi standard is IEEE 802.11ax, that is com-
monly known as Wi-Fi 6. However, for simplicity we will configure an older version, it will be
enough for our investigation purposes.

10

Since we will make all devices capable of communicating via wireless medium, we will no longer
need the switch. Wi-Fi networks can operate in two modes: infrastructure and ad-hoc. Infrastruc-
ture mode is a very common mode that we are using at our homes when we connect all Wi-Fi
devices to an access point. However, the presence of the access point is not necessary, because
the devices can communicate with each other directly. For the sake of simplicity, we will consider
this second mode, called ad-hoc. Then the network topology becomes very simple (see Fig. 6.6).

10

12

(((I))) (((T)))

()

n3

Figure 6.6: Wireless network topology in ping-example experiment.

. Delete from the code everything related to the switch and wired links configuration. Note
that pcap traces collection also has to be replaced, because we will not use the CsmaHelper
anymore.

Now we will add the Wi-Fi network configuration and install Wi-Fi NetDevices on each node.
For that, we will use the following code:

//configure Wi—Fi parameters
WifiHelper wifi;
wifi.SetStandard (WIFI_STANDARD_80211a) ;
SpectrumWifiPhyHelper wifiPhy;
Ptr<MultiModelSpectrumChannel> channel = CreateObject<MultiModelSpectrumChannel
>();
wifiPhy .SetChannel (channel);
WifiMacHelper wifiMac;
wifiMac .SetType ("ns3::AdhocWifiMac", "QosSupported", BooleanValue (false));
wifi.SetRemoteStationManager ("ns3:: ConstantRateWifiManager",
"DataMode" , StringValue ("OfdmRate6Mbps"));

//insert Wi=Fi NICs into nodes
NetDeviceContainer endNodeDevices = wifi.lInstall (wifiPhy, wifiMac, endNodes);

Here we configure separately Physical (PHY) and Media Access Control (MAC) layers of
Wi-fi and pass them as arguments to the Install function of WiFiHelper. We explicitly set
the constant rate mode, because by default Wi-Fi adapts its transmission rate depeding on

11

nodes’ channel conditions. We disable this feature and fix the transmission rate to 6 Mbps,
which coresponds to the lowest Wi-Fi data rate. To make this code work, we have to include
two libraries: ns3/wifi-module.h and ns3/multi-model-spectrum-channel.h.

To enable pcap traces collection, instead of the prior line of code we add:

1 wifiPhy .EnablePcapAll("ping—example")

3. Run the following command:
|% git diff

You will see highlighted the differences you made in the file. Save the output of the com-
mand to a text file.

4. Run the modified experiment. Make sure that the ArpCache::PopulateArpCache function
call is added into the experiment source file. Save the program output and the generated
pcap files.

- Look inside the content of each pcap file. Which packets do you see inside them?
Do all the pcap files contain the same packets? Why?

- Look inside the content of the pcap file that corresponds to a source node that
executes the ping command. How many packets are sent for each ICMP ping request?

- Compare the results for the wireless and wired topologies. Use the pcap traces
and saved text files. Please also indicate the name of the file that contains the output of the
diff command.

Part 2. Modeling of pure Aloha

Starting from this section, we will no longer work with the ping-example experiment and switch to
the aloha_vs_dcf experiment located in directory ~/ns3-student/scratch/aloha_vs_dcf/. We
will start with the modeling of the pure Aloha MAC layer protocol. Although Wi-Fi devices do not
use Aloha for communication, NS-3 allows us to modify any protocol behavior, or substitute one
protocol with another one.

Aloha is a random access protocol introduced in 1970s by Norman Abramson and his colleagues
at the university of Hawaii (history of Aloha is well described by Abramson in http://wwu2.
hawaii.edu/ pager/Aloha’,20History.pdf). The idea is very simple: when a device has a
packet for transmission, it can immediately start to transmit. However, when more than one
device transmits at the same time, there is a high probability that none of the packets will be
received successfully. Such an event is called a collision. When a device transmits a packet,
it expects an acknowledgment is sent back from the receiver. If the acknowledgment does not
arrive at the sender within a timeout, it assumes that the packet was not successfully delivered,
e.g., due to collision. In this case, the sender retransmits the packet after some randomly selected
amount of time. This delay should be random to avoid further collisions between retransmissions.

12

2

2

/3

http://www2.hawaii.edu/~pager/Aloha%20History.pdf
http://www2.hawaii.edu/~pager/Aloha%20History.pdf

In telecommunication theory, the time intervals between packet arrivals are often modeled with
an exponential random variable. Since the retransmissions are sent after a random delay, we can
further assume that the aggregated data flow of both initial transmissions and retransmissions
for each user is a single flow with inter-packet intervals distributed exponentially. In general, this
is not true, but this assumption can provide a good trade-off between modeling accuracy and
complexity. We say that the data flow has intensity A packets per second (pkts/s) if the average
inter-packet interval is } There is a very useful property: if we have n flows with intensities Ay,
A2, ..., A, then the overall intensity equals)" ; A;. Such data flows are called Poisson data
flows.

In this section and further, we consider the following scenario: N “client” devices that generate
Poisson data flows of the same intensity A destined to the same single “server” device. Since
we aggregate initial transmission and retransmissions into a single Poisson flow, we assume
that the packets are dropped if they have not been successfully delivered, i.e., there is only one
transmission attempt for each packet. Furthermore, we assume that transmissions are failed only
due to collisions, i.e., when two or more devices transmit data simultaneously. There is a special
type of collisions that we should keep in mind, “internal” collisions, when a packet is generated
at a device before this devices finishes transmission of the previous packet. In this case, we also
drop the second packet. The effect of “internal” collisions is negligible if the traffic intensity on
each node is low. In each experiment, for a given number of devices we calculate the aggregate
network throughput. Then, we can plot the dependency of the aggregate throughput on the load
(intensity of aggregate flow from all nodes).

Exercise 4: Simulation of pure Aloha using Wi-Fi module

In this exercice, we will model the pure Aloha protocol efficiency in the described above scenario.

1. Run experiment aloha_vs_dcf with its default parameters. By default, the experiment cre-
ates 2 nodes, client and server.

| % ./../../ns3 run --cwd=$PWD "aloha_vs_dcf"

- How many additional files appeared in the working directory? What kind of files?
What is the content of the text file?

- Look inside the content of each pcap file. Which transport layer protocol is used
by an application that generates packets? What are the packet size and payload size?

- How much time does it take to transmit one packet? Use wireshark to answer.

‘ Note that wireshark shows you the time elapsed since the first captured packet. To see
the difference between timestamps in two files, go to View -> Time Display Format -> Time
of Day.

2. Run experiment aloha_vs_dcf two more times, but this time with additional parameter Rn-
gRun.

13

"

2

2

11

13

15

% ./../../ns3 run --cwd=$PWD "aloha_vs_dcf --RngRun=1"
h<...>
% ./../../ns3 run --cwd=$PWD "aloha_vs_dcf --RngRun=2"

Compare the content of the text file for the first and second run. You will notice that they
are different. Moreover, if you will open the file aloha_vs_dcf.cc, you will see that there
is no such command line argument defined. This is because this argument is global and
does not need explicit definition in a scenario. Changing of this argument changes the gen-
eration sequence for all random variables used during the experiment (see more details at
https://www.nsnam.org/docs/manual/html/random-variables.html). For example, the
exponential random variables responsible for inter-packet intervals will generate different
values for different values of RngRun argument. Usually, in experiments that involve ran-
domness, the experiment is executed multiple time with different runs (RngRuns), and the
results of different runs are averaged.

Now look deeper inside the file aloha_vs_dcf.cc and find the differences between this
file and ping-example.cc with configured wireless topology. You will notice multiple things
that you haven’t seen before. We will go through all of those differences. First, there are
additional configurations right after the definition of command line arguments.

// disable fragmentation for frames below 2200 bytes

Config :: SetDefault ("ns3::WifiRemoteStationManager :: FragmentationThreshold",
StringValue ("2200"));

// turn off fragmentation at IP layer

Config :: SetDefault ("ns3:: WifiNetDevice ::Mtu", StringValue ("2200"));

// turn off RTS/CTS for frames below 2200 bytes

Config:: SetDefault ("ns3:: WifiRemoteStationManager :: RtsCtsThreshold",
StringValue ("2200"));

//Allow only one transmission attempt

Config:: SetDefault ("ns3:: WifiRemoteStationManager ::MaxSsrc", UintegerValue (0)
)5

Config:: SetDefault ("ns3:: WifiRemoteStationManager :: MaxSlrc", UintegerValue (0)
)5

//Disable backoff for Aloha
if (!isDcf)

Config:: SetDefault ("ns3::Txop:: DisableBackoff", BooleanValue (true));
}

With this configurations, we avoid fragmentation of packets and disable an exchange of
additional specific Wi-Fi packets. We also allow only one transmission attempt for each
packet, so that we drop packets if the intial transmission fails. The flag isDcf switches the
MAC protocol between Aloha and DCF. When this variable is false, we also disable the
backoff procedure, which is relevant only for DCF.

. Second, we install applications on the nodes to transmit and receive data. For each

client node, we install the UdpEchoClient application, whose source code is located in
~/ns3-student/src/applications/model/udp-echo-client.cc. We configure this ap-
plication to send an unlimited number of packets (UINT32_MAX is a sufficiently big num-
ber), i.e., until the end of simulation. We also configure the payload size and inter-packet
interval. On the server node, we install the PacketSink application, whose source code
is located in ~/ns3-student/src/applications/model/packet-sink.cc. This application
simply receives all the packets that are destined to it, i.e., to the right IP address and port
number.

//Install server on station 0

14

https://www.nsnam.org/docs/manual/html/random-variables.html

10

12

14

16

18

11

PacketSinkHelper server ("ns3::UdpSocketFactory",InetSocketAddress(interfaces.
GetAddress (0),9));

ApplicationContainer serverApps = server.Install (serverStation);
serverApps. Start (serverStart);
serverApps.Stop (simTime);

//Install clients

UdpEchoClientHelper echoClient (interfaces.GetAddress (0), 9);

echoClient. SetAttribute ("MaxPackets", UintegerValue (UINT32_MAX));

echoClient. SetAttribute ("EnableRandominterval", BooleanValue (true));

std :: ostringstream intervalDist;

intervalDist << "ns3::ExponentialRandomVariable [Mean=" << packetinterval.
GetSeconds () << "]";

echoClient. SetAttribute ("RandomlintervalVariable", StringValue (intervalDist.
str ()));

echoClient. SetAttribute ("PacketSize", UintegerValue (packetSize));

ApplicationContainer clientApps = echoClient.Install (clientStations);
clientApps. Start (clientStart);

clientApps.Stop (simTime);

- On which port number does the PacketSink application listen to incoming data?
How can you find this out?

. Third, we use the NS-3 tracing system to catch the events when packets arrive to the Pack-

etSink application (you can find more information about tracing at https://www.nsnam.
org/docs/tutorial/html/tracing.html).

uint32_t RcvPktCount = 0;

void
ReceiveTrace (Ptr<const Packet> pkt, const Address & addr)

{
RcvPktCount++;

}

<...>

serverApps.Get(0)—>TraceConnectWithoutContext ("Rx", MakeCallback(&ReceiveTrace
)) s

When we connect a trace to an NS-3 object (here to PacketSink application), we call a
specific function (here ReceiveTrace) every time a certain event happens at this object. To
see how it works, open the file ~/ns3-student/src/applications/model/packet-sink.
cc and find in function PacketSink::GetTypeld() the definition of the attribute “Rx”. The trace
source connected to this attribute is called m_rxTrace. Now locate the place in this file,
when this trace source is called.

void
PacketSink :: HandleRead (Ptr<Socket> socket)
{

<...>
while ((packet = socket—>RecvFrom(from)))

{

m_rxTrace (packet, from);

}

15

"

https://www.nsnam.org/docs/tutorial/html/tracing.html
https://www.nsnam.org/docs/tutorial/html/tracing.html

—_

Every time when the application reads something from the socket, it calls m_rxTrace, which
is further connected with our function ReceiveTrace. Note that there are two parameters
passed to m_rxTrace: the packet received from the socket and the address of its source.
Exactly the same parameters are expected by the function ReceiveTrace (we do not use
them, but we could).

Finally, we write a function PrintProgress that schedules itself once per second (in simula-
tion time, not real time) and prints in standard error stream the percentage of time passed
from the start of the experiment. It is useful especially for long experiments when we want
to understand how fast the experiment runs and how much time is left till the end of the
experiment. Take a look at the syntax of the Simulator::Schedule function:

Simulator :: Schedule (Seconds (1), &PrintProgress, simTime);

In this case, it takes three arguments. The first argument is the delay between the current
simulation time (Simulator::Now()) and the target time when you plan to execute the event.
The second argument is the reference to the function to be exectuted. Note that function
PrintProgress in not a member of any object. If we have to schedule a function call for
a member of an object, we should add an additional argument after the reference to this
member — the pointer to the object, owner of this member. All the following arguments
will be passed to the scheduled function. For example, function PrintProgress expects one
argument, the simulation time. Thus we pass this argument to the Simulator::Schedule.
See more details at https://www.nsnam.org/docs/manual/html/events.html.

. Now, when you understand the code and did some test runs, it is time to conduct our

first meaningful experiment. Using the experiment aloha_vs_dcf and varying the number of
stations from 1 to 100 with step size 10 (i.e., 1, 11, 21, 31, etc.), plot throughput as a function
of the number of devices. Average results over 5 runs with RngRun=1, 2, 3, 4, 5. Save all
the scripts you used to run experiments and plot the results.

- Describe the dependency of throughput on the number of devices. Include the
figure.

‘By default, the pcap traces collection is enabled. We will not need them, so we can
disable it by setting the flag collectPcap to false. Besides, to avoid rebuilding of the source
file you can use the flag “—no-build”.

‘Multiple experiments with different parameters can be easily run automatically using
a bash script, e.g., the following one (saved in ~/ns3-student/scratch/aloha_vs_dcf/
scripts/run_experiment.sh):

#1/bin/bash
set —e

for run in $(seq 1 5); do
for n in $(seq 1 10 100); do
./../../ns3 run —no—build —cwd=$PWD "aloha_vs_dcf —RngRun=$run —
numOfStations=$n —isDcf=false —collectPcap=false"
cat result.txt >> aloha—pure—$run.dat

16

2

https://www.nsnam.org/docs/manual/html/events.html

9

11

13

15

17

19

21

23

done
done

Tip: do not run all the experiments when you are not sure that everything works correctly.
Check on RngRun=1 and several values of n. You can use one laptop for running the
experiments, and another one for programming.

‘ Note that we have to run the experiment 5 x 20 times, so it might take too long if we use
only one thread. To benefit from multiple threads, you can use GNU Parallel. For example,
you can use a script similar to the following one (saved in “/ns3-student/scratch/aloha_
vs_dcf/scripts/run_experiment-parallel.sh):

#1/bin/bash
set —e

mkdir —p results

parallel "./../../ns3 run —no—build —cwd=$PWD \"aloha_vs_dcf —RngRun={1} —
numOfStations={2} —isDcf=false —alohaSlot=0us —collectPcap=false —
outFileName=results/{1} —{2}.txt\"" ::: $(seq 1 5) ::: $(seq 1 10 100)

‘To plot the results, you can use the matplotlib Python library, or any other instrument.
For example, the following script can be used (saved in ~/ns3-student/scratch/aloha_
vs_dcf/scripts/plot.py):

#!1/usr/bin/python3

import numpy as np
import matplotlib.pyplot as plt

5
100

num_runs
max_stas

pure = np.zeros (10)

for run in range (1, num_runs+1):

df_pure = np.genfromtxt (f"aloha—pure—{run}.dat", names=None)
pure += df_pure[:, 1] / num_runs

plt.figure (figsize=[5.5, 4.0])
num_stas = np.array (range(1, max_stas + 1, 10))

plt.plot (num_stas, pure, label="sim pure Aloha’, color = ’g’, marker = '+’
linestyle="None’)

s

plt.xlabel ("Number of stations")
plt.ylabel ("Throughput, Mbps")
plt.grid ()

plt.legend (loc="best")

plt.savefig ("throughput.png", dpi=200)

If you use GNU parallel to run experiments, then before executing the script plot.py you
can run a simple bash script (saved in ~/ns3-student/scratch/aloha_vs_dcf/scripts/
merge_results.sh) to gather the results:

#1/bin/bash

set —e

17

10

for run in $(seq 1 5); do
touch aloha—pure—$run.dat
for n in $(seq 1 10 100); do
cat results/pure—$run—$n. txt >> aloha—pure—$run.dat
done
done

‘General remark: do not delete any results you calculate during the lab. You will need
the same results in several parts, and some of them require much computation time.

From theory, it is well known that the dependency of normalized throughput on normalized
load can be expressed with the following equation: 7' = G - exp~2¢ [1]. In this equation,
normalized load G is the average number of packets that are generated during the trans-
mission of one packet, while normalized throughput T is a fraction of time when packets are
successfully transmitted without collisions. Rescale the figure plotted in the previous task
according to the described axis and plot on the same figure two curves: (1) obtained from
simulation, and (2) according to the analytical equation. Note that you do not need to re-
calculate the results, just rescale the ones obtained in the previous task. Save the modified
scripts.

- Describe how you rescale the results. Refer to the modified scripts.

- Compare the curves obtained from the analytical equation and from simulation.
What is the maximum value of the observed normalized throughput? At which point is it
achieved? Include the figure.

- In our experiment, we fix the traffic intensity on each node and vary the load by
changing the number of devices. We could also vary the load in a different way: fix the
number of devices, e.g., to 10, and vary the intensity of traffic. Will this approach provide
the same results? Explain why (not).

‘ Here are some tips regarding rescaling of the figure. Let the number of stations be N,
the average interval between packets be ¢ us, and the packet transmission duration (from
the Task L6-4-3) be 7 pys. Then, the normalized load equals G = % Further, if the
network throughput equals S Mbps, and the packet size equals p bits, then the normalized
throughput equals T = %

‘ Do not forget to include all the scripts you use in the report. Refer to these scripts in
your answers so that it will be easy to find them.

‘ Do not forget to rebuild the project if you change something in the source files, e.g., in
aloha_vs_dcf.cc.

18

2

2

2

Part 3. Modeling of slotted Aloha

In pure Aloha, devices transmit data completely asynchronously. It is intuitively clear that syn-
chronization between devices can improve the network capacity. For example, if we divide time
into slots, where the slot duration equals the duration of a packet transmission, and allow devices
to transmit only in the beginning of these slots, the collisions will occur only when multiple devices
select the same slot. In other words, the transmission from a device cannot interrupt the ongoing
transmission in the middle of the slot. Lawrence G. Roberts was the first researcher who derived
the analytical equation to calculate such a system’s throughput: 7' = G - exp~ ¢ [2]. We can see
that the exponent becomes —1 instead of —2, thus the throughput for slotted Aloha is indeed
higher.

Exercise 5: Simulation of slotted Aloha using the Wi-Fi module

In this exercice, we will model the slotted Aloha protocol efficiency. For that, we will modify the
implementation of the Aloha protocol in NS-3, i.e., we will modify the source file in the Wi-Fi
module.

1. Before this exercise, we worked mostly in the scratch directory, where the source files of
the experiments are located. Now it is time to look inside the implementation of the Aloha
protocol. Open the file ns3-student/src/wifi/model/adhoc-aloha-mac.cc. It has multi-
ple functions, but we are interested only in two of them, Enqueue and Receive. The first
function is responsible for data transmission from the device to the wireless medium, while
the second one — for data reception from the wireless medium.

Not all the content of these functions is important for us. Below you can find the important
parts of the Enqueue function:

void
2 AdhocAlohaMac : : Enqueue (Ptr<Packet> packet, Mac48Address to)
{
4 if (!GetWifiPhy ()—>IsStateTx ()) //if already transmitting — drop packet
{
6 WifiMacHeader hdr;
hdr.SetAddr1 (Mac48Address :: GetBroadcast ());
8 <filling the rest of the header>
10 Ptr<WifiMpdu> mpdu = Create<WifiMpdu>(packet, hdr);
<...>
12 GetTxop ()—>Enqueue (mpdu);
<...>
14 //immediately start transmission
GetFrameExchangeManager ()—>StartTransmission (GetTxop (), width);
16 }
}

The code can be interpreted as follows. Whenever a device has a packet for transmission:

« If it is already transmitting something, then we experience an internal collision. Ac-
cording to our previously negotiated assumptions, we expect the device to drop the
packet.

+ If it does not transmit anything yet, then we can immediately start transmission of the
packet.

You probably already noticed in the pcap files that there is something different compared
to the pcap file from the ping-example experiment — there are no Wi-Fi acknowledgements.
Normally, Wi-Fi devices acknowledge packets that they successfully receive. However,

19

11

13

they do not do that for broadcast transmissions, otherwise all devices will have to send
acknowledgements at the same time. We disable acknowledgements to allow traffic to go
only in one direction, from clients to packet sink. That is why we set the destination address
to Mac48Address::GetBroadcast (), which is ff:ff:ff:ff:ff:ff.

Now look at the Receive function. Similarly, below you can see the important parts:

void
AdhocAlohaMac : : Receive (Ptr<const WifiMpdu> mpdu, uint8_t linkld)
{

const WifiMacHeader+ hdr = &mpdu—>GetHeader () ;

Mac48Address from = hdr—GetAddr2() ;

Mac48Address to = hdr—>GetAddr1 () ;

// filter broadcast packets
if (hdr—IsData() && GetAddress () == Mac48Address ("00:00:00:00:00:01"))

ForwardUp (mpdu—>GetPacket () —>Copy () , from, to);
return;
}
}

Since we indicate the broadcast MAC address as a destination address, all the nodes will
assume that each packet is destined to them. We know that we installed a packet sink
on the first node, which has MAC address 00:00:00:00:00:01. Thus, we allow only this
node to forward packets further up to the IP and UDP layers. This filtering as well as
substitution of MAC address is not a general behavior and is done here only to disable
Wi-Fi acknowledgements.

. To implement slotted Aloha, we have to modify the Enqueue function. Specifically, we

cannot send packets right away anymore. Instead, we have to defer transmissions (i.e.,
using the function call GetFrameExchangeManager ()->StartTransmission) until the closest
slot boundary. To do that, we can use the function Simulator::Schedule, which we have
already seen. Modify the Enqueue function to implement the described behavior. Here are
several tips:

» The call of Simulator::Schedule can look similar to this line:

Simulator :: Schedule (delay, &FrameExchangeManager:: StartTransmission,
GetFrameExchangeManager (), GetTxop (), width);

+ To get the current simulation time, you can use the function Simulator::Now (). Note
that this function returns a Time object, which has function-members GetSeconds(),
GetMilliSeconds(), GetMicroseconds(), etc. All these function-members, except Get-
Seconds(), return integer values.

» The duration of the slot equals the duration of the packet transmission. You can use it
as a constant.

When you finish, go to the directory ns3-student/src/wifi/model/ and execute the fol-
lowing command:

| % git diff adhoc-aloha-mac.cc
Save the output of this command to a text file.

Rebuild the project. Using the experiment aloha_vs_dcf and varying the number of stations
from 1 to 100 with step 10, plot the normalized throughput as a function of the normalized

20

load. Average results over 5 runs with RngRun=1, 2, 3, 4, 5. Save all the scripts you used
to run experiments and plot the results. Plot on the same figure two curves: obtained from
simulation and according to the analytical equation.

- Describe which modifications were required for the slotted Aloha implementation.
Refer to your diff file.

- Compare curves obtained from the analytical equation and from simulation. What
is the maximum value of the observed normalized throughput? At which point is it achieved?
Include the figure.

- How would the throughput change if you set the slot size duration shorter than the
packet transmission duration? If you set it longer? Explain your answers.

Part 4. Comparison between Aloha and DCF

In this final part of the lab, we will compare the performance of the Aloha protocol to DCF. A
modified version of DCF is used in real Wi-Fi devices.

Exercise 6: Comparison between Aloha and DCF: can we do better than Aloha?

Switch from AdhocAlohaMac to AdhocWifiMac. Using the experiment aloha_vs_dcf and varying
the number of stations from 1 to 100 with step 10, plot the estimated throughput as a function of
the number of devices. Average results over 5 runs with RngRun=1, 2, 3, 4, 5. Save all the scripts
you used to run the experiments and plot the results. Plot on the same figure three curves: pure
Aloha, slotted Aloha and DCF (provided by AdhocWifiMac).

- Compare the curves. Which one provides the highest throughput? Why?

21

A

A

2

/3

Acronyms

ARP Address Resolution Protocol

ICMP Internet Control Message Protocol
IP Internet Protocol

IPv4 P version 4

MAC Media Access Control

UDP User Datagram Protocol

22

Bibliography

[1] Norman Abramson. The ALOHA system: Another alternative for computer communications.
In Proceedings of the November 17-19, 1970, fall joint computer conference, pages 281-285,
1970.

[2] Lawrence G Roberts. ALOHA packet system with and without slots and capture. ACM SIG-
COMM Computer Communication Review, 5(2):28—42, 1975.

23

	Practical Arrangements
	Virtual Machine with NS-3

	NS-3: Introduction
	Basics of NS-3
	Modeling of pure Aloha
	Modeling of slotted Aloha
	Comparison between Aloha and DCF

	Acronyms

