WIP: Distributed inference for human pose
estimation using mmWave Wi-Fi

Wouter Lemoine*, Nabeel Nisar Bhat*, Jakob Struye*, Andrey Belogaev™,
Jesus Omar Lacruz!, Joerg Widmer', Jeroen Famaey*
*University of Antwerp - imec, Antwerp, Belgium. Email: {firstname}.{lastname} @uantwerpen.be
TIMDEA Networks Institute, Madrid, Spain. Email: {firstname}.{lastname} @imdea.org

Abstract—Joint Communication and Sensing (JCAS) is ex-
pected to play a critical role in next-generation wireless
networks such as 6G. For complex sensing tasks, such as 3D
pose estimation for virtual reality (VR) applications, accurate
channel impulse response (CIR) or I/Q samples as well as
processing using a neural network is required. Due to the
higher bandwidth and antenna array sizes of future wireless
networks, it is expected that offloading this data to a remote
server for processing would require data rates in the order of
100s of Megabits per second, which is an unreasonable amount
of overhead. Therefore it is necessary to preprocess the sensing
data locally, and reduce the raw data to useful intermediary
features, to mimimize the sensing data transmission overhead,
especially when using multiple sensing devices. This paper
proposes a method leveraging split inference to distribute
neural networks across multiple devices, which achieves high
accuracy while addressing the sensing data transfer bottleneck.
We evaluate the performance of the proposed method in a
VR gaming scenario, where mmWave Wi-Fi signals are used
for 3D pose estimation. We show that split inference allows
for reducing the communication overhead by three orders
of magnitude compared to the centralised approach, while
only losing 10% of accuracy. These results pave the way for
future work, exploring highly distributed multi-static JCAS as
a practical and efficient method of sensing.

I. INTRODUCTION

Joint Communication and Sensing (JCAS) is envisioned
to be an important part of next-generation wireless networks
such as 6G [1]. It integrates wireless communication and
sensing functionalities into a single system allowing efficient
use of the Radio Frequency (RF) spectrum. When a Neural
Network (NN) is used for processing, it is commonly
referred as data-driven or Al-based JCAS. Using JCAS
has many advantages, including hardware re-use and time
sharing between communication and sensing tasks [1].

JCAS can make use of many different types of signal
metadata such as Received Signal Strength Indicator (RSSI)
patterns, Channel State Information (CSI), Channel Impulse
Response (CIR), or raw 1/Q samples. For certain sensing
scenarios, it is sufficient to use RSSI patterns, but for more
complex tasks such as markerless 3D pose estimation, it is
beneficial to make use of CSI, CIR or raw I/Q samples with
high granularity. The latter three methods typically generate
tremendous amounts of sensing data and would impose a
great overhead to transmit this data to a central server, where
the sensing result is desired. It is therefore preferred to

perform part of the signal processing on the sensing device,
to reduce the raw sensing data to a compressed set of useful
intermediary features.

Next, Intuitively, using multiple sensing devices can give
more accurate results over a single device. However, multi-
ple devices will only exacerbate the sensing data overhead,
increasing it linearly with the number of devices, furthering
the need to do on-device signal processing. To provide a
single pose estimation result on a central server, a method
is needed to combine the results of multiple devices.

In this paper, we propose a method leveraging split
inference to achieve better performance over single-device
methods, while achieving comparable results to a completely
centralised approach and keeping the sensing data transfer
overhead to a reasonable amount. Using a NN on each
device, we can preprocess the data locally, then use a
fusing algorithm on a central server to combine results
from multiple devices. Finding the optimal split between
preprocessing on a device and the postprocessing on a
centralised server is a non-trivial optimisation problem and
is considered future work beyond the scope of this Work-
In-Progress (WIP) paper.

Previously, similar but less complex tasks, such as human
position tracking and activity recognition, have been studied
using similar methods [2—-4], showing that such tasks are
feasible using CSI and CIR sensing data. Others have also
studied the problem of skeleton-based pose estimation using
multiple devices [5, 6] but did not consider distributing
the NN over the devices. This sets our work apart as we
do consider distributing the NN to decrease the sensing
data transfer bottleneck. Other works have also shown that
distributing a NN has beneficial effect on the data transfer
bottleneck [7], but did not apply it to human pose estimation.

II. METHODOLOGY & ARCHITECTURES

This section describes the steps performed to gather the
training and testing data, considered NN-based architectures
and how the NNs were trained and tested.

A. Data collection

The input data used for training comes from a data collec-
tion campaign where three people were tracked playing an
interactive Virtual Reality (VR) game in an office environ-
ment. The users were constantly monitored, however, due

L -
£

Il Cameras 1.62m),

Rxd 290m l
?—> 2.14m
Rx? 3.36m
Y

0.18 m

y0-99m -
7 Y 6 (('[Tz&
II L71m 2.10m b
% 2.90
] Rx2

E!-! 2.46m >
Rx1|

I N —

[
[T L1

N

— S

Fig. 1: Top-down view of the data collection setup

to hardware constraints only 105 seconds of sensing data in
bursts of 7 seconds is available per person. The data collec-
tion setup consists of four devices (denoted Rx in the figure),
a transmitter (denoted Tx) and a Kinect camera, placed
according to the scheme shown in Figure 1. The receivers
and transmitter were controlled by an Xilinx UltraScale
Field Programmable Gate Array (FPGA), and the signals
were sent and received using mmWave Sivers EVK06002
development kits using 60 GHz up/down converters with a
carrier frequency of 60.48 GHz, more information about the
testbed can be found in [8]. The Kinect Camera was used
to record the ground truth, which consists of 25 body joints
measured as (X, Y, Z) coordinates. This generated ~~43 GB
of sensing data for testing and training.

A device produces CIR samples at a rate of 2775
samples per second in a (12, 128) shape of Float32 values,
where 12 is the number of training fields and 128 is the
number of range bins. 67 such sub-samples are buffered
before being passed to the NN, leading to an input sample
shape of (67, 12, 128). The number 67 is chosen such that
the CIR sample rate matches the Kinect sample rate of 30
samples per second with interpolation to ~41.5 samples
per second as closely as possible. Next, depending on the
number of used devices, denoted nsq, we arrive at a sample
shape of (nsq4, 67, 12, 128), which will be passed to the NN.

B. NN-based architectures

In this section, we describe the three architectures that
have been trained to solve the problem of pose estimation
using Wi-Fi CIR data. We use the local NN on a single
device and Centralised NN with shared data from multiple
devices architectures as baselines for our proposed solution.

The general NN used is shared between architectures. The
NN deployed on the devices is an adaption of ResNetl8 [9]
with ngg input features and outputs features of dimension
75 (25 body joints times 3 coordinates per joint).

We consider the following three architectures:

1) Baseline 1: Local NN on single device: In this ar-
chitecture, we use the data from only a single device, as
shown in Figure 2a. The single device has an embedded

NN that directly calculates the human pose estimation. This
baseline has the intuitive limiting factor of having only one
viewpoint on the room. Using this as a baseline, we later
show the benefits of using multiple devices.

2) Baseline 2: Centralised NN with shared data from
multiple devices: On the other end, a completely centralised
network is used, as shown in Figure 2b. Here, the devices
transmit their full CIR data to the central server and all
calculations are performed there. Intuitively, this architecture
would achieve the best performance, as all of the sensing
data is used. However, it requires all raw CIR samples to
be transmitted from the distributed devices to the central
server, which generates a large communication overhead.
The overhead will be estimated in Section III.

3) Proposed solution: Local NN with centralised fusion:
This approach is our proposed solution that tries to balance
performance and computation/communication overhead. As
shown in Figure 2c, a central server that receives the outputs
of the local NNs and performs a fusion algorithm to calculate
a joint result. This introduces less communication overhead
than the centralised NN at the cost of some computational
overhead on the devices, which will be proven in Section III
and also a small reduction in pose estimation accuracy.

Generally, the fusion algorithm can be any type of func-
tion that takes ngq sets of output values from local NNs
on multiple devices and outputs a single set of output
values. In this early work, a simple averaging function
over the output coordinates of each local NN is used. This
has empirically shown to have good performance while
keeping computation overhead to the bare minimum. We
note that more complex fusion algorithms, for example
using a NN, would allow the local NN to output different
shapes of intermediate data, potentially leading to increased
performance. This more complex fusion algorithm may lead
to increased performance.

C. Training

As our work focuses on the overhead when distributing
NN, the training happens in an offline and centralised man-
ner. This separates our work from Federated Learning. The
loss function used for training the NN was Mean Squared
Error (MSE). The data was split into typical 75/2.5/22.5%
training/validation/testing sets.

By performing hyperparameter sweeps the NNs were
each tuned for optimal performance. For all architectures,
0.0001 for learning rate and 0.000001 for weight decay were
empirically the best values. For the local NNs a dropout of
0.2 yielded best performance, whereas for the centralised
NN a dropout of 0.35 was deemed optimal.

III. COMPUTATION AND COMMUNICATION OVERHEAD

In this section, we describe a mathematical model for
the communication and computation overhead for the three
approaches. When deciding where to place computation rel-
ative to a data source, there’s a natural trade-off to consider.
Moving more computation away from the data source allows

(a) Local NN on single sensing device

Sensing device

:&)2

Neural
Network
(trained for

N sensing
devices)

) Input
& Neural Network
sample

Sensmg device 1 JO

~

) Input
& Neural Network
sample

Sensing device N)

(c) Local NN with centralised fusion

Fig. 2: Network architectures

the use of more powerful hardware but requires more data
transfer. In contrast, placing computation close to the data
source avoids the need for data transfer, though it typically
involves using less powerful hardware.

A. Computation Overhead

To calculate the computational overhead, a notion of
computation cost of a NN is necessary. Commonly, when
using NN, the number of Multiply-Accumulate (MAC)
operations is used. A MAC operation is equal to 2 Floating
Point Operations (FLOPS), which are a standard metric
of computing cost. This work uses ResNetl8 as the base
model, which comprises of Conv2d, BatchNorm2d and
Linear layers, requiring MAC operations. For each of these
layer types there is a general formula that can be used to
calculate the number of MAC operations.

1) For Conv2d this formula is: Ouwidih-Oneight*Ochannels:
kernelsize with O being the output shape.

2) For Batchnorm2d, the number of MAC operations is
equal to the number of input features.

3) For linear layers the number of MAC operations
corresponds to the formula: features;, - features,;

Using the corresponding formulas, we calculate the total
number of MAC operations for each case. The local NN
on single device requires 4.19 - 10° MAC operations. Next,
the centralised NN with shared data from multiple, in this
case 4, devices requires 4.43-10% MAC operations, however
these can be disregarded as these operations are run on the

central server, for which it can be assumed that it has a
significantly larger amount of processing power. The small
increase in MAC operations is due to the input layer scaling
linearly with the number of devices. Lastly, the local NN
with centralised fusion will require ngq times the number
of MAC operations for a single device. With ngg = 4
this equals 16.76 - 10° total MAC operations. However, this
would be split amongst nsq devices. Furthermore, the fusion
algorithm has negligible calculation overhead.

B. Communication Overhead

When calculating communication overhead, we again
consider the three cases:

1) Local NN on single device: in this architecture there is
only a single device, the result gets directly communicated
to a centralised server. The data that needs to be transmitted
is the final result of 25 (X, Y, Z) coordinates consisting of
32bit Floating Point (FP) numbers. Such a packet contains
300 B of data. The sample rate equals ~41.5 samples per
second and is equal to the rate of transmission of the result.
Multiplying these numbers leads to a data rate of 99.6 kbps.

2) Centralised NN with shared data from multiple devices:
this architecture makes use of multiple devices, since the
network is centralised all raw data needs to be streamed
to a centralised server. The server can then aggregate the
data and process it with the NN. The data that needs to be
transmitted is of the shape (67, 12, 128) per device as defined
in Section II-A. Such a sample also consists of 32bit FP
numbers and is therefore 411 648 B of data per sample. The
transmission rate is equal to that of 1) leading to a total data
rate of ~136.7 Mbps per device. With nyy = 4, we require
a total data rate of ~546.7 Mbps.

3) Local NN with centralised fusion: this scenario is
similar to 1), but since there are multiple devices, the total
data rate is equal to n,, times the data rate of a single device
(99.6 kbps). With nsy = 4, we have a total data rate of only
398.4kbps. When comparing 1) and 3), we note that the
total required data rate increases linearly with the amount
of devices nyqy. Comparing 2) and 3), we show a 1372-fold
decrease in required data rate when the number of devices
in both scenarios are equal.

Note that we do not consider the extra overhead that
comes with headers, as this depends on the specific protocol
used to communicate sensing data.

C. Evaluation

To evaluate our architectures, we used the testing data cre-
ated from the initial dataset. This simulates the environment
in which the NN-based architectures would be deployed,
if they were deployed on physical systems. For the single
device baseline, we test the NN on all 4 positions separately
and pick the best performing position.

IV. RESULTS AND DISCUSSION

This section describes the results we gained after training
and testing the three architectures. We used nyq = 4 devices

TABLE I: Comparison of loss and communication and
computation overhead between architectures

Loss Communication Computation
Model (MSE) Overhead (Mbps) Overhead
(total) (MACs)

- - - —9
Smglg sensing device 0.0076 0.0996 4.19 IQ
Baseline (on device)

09
Centralised Baseline | 0.0060 5467 4.43-10
(on server)
Local NN with 16.76 - 107
centralised fusion 0.0066 0.3984 (on device)

to test these architectures. From testing we show that the
centralised baseline has the best performance but, due to
communication overhead, this approach is infeasible in a
real-world deployment. Our solution lowers the loss by
13% over the single device baseline, while keeping the
communication and computation overhead reasonable.
Table I summarizes the MSE of testing with the related
communication and computation overhead for each ap-
proach. The results show that the local NN with centralised
fusion achieves better performance than the single device
baseline, however some performance is lost compared to the
centralised benchmark. This happens due to information loss
caused by processing the data locally and only combining
the final results, compared to the centralised NN where
the NN can use all information from all devices when
calculating the result. On the other hand, the centralised
benchmark requires an unworkable data rate, whereas our
proposed solution requires little bandwidth in comparison.

V. FUTURE WORK

This paper is an exploratory initial work. As of now there
are two main limitations: 1) the accuracy of our approach
is 10% lower than the fully centralized approach 2) the
current approach doesn’t account for computational resource
limitations on the sensing nodes.

To work out these limitations we consider many avenues
for future work. First, consider increasing the complexity
of the fusion algorithm. At the moment, only a simple
averaging function has been used, which has shown to work
well but it potentially can be improved. Second, investigate
splitting the NN in an input and output sub-network, where
the input sub-networks are run on the devices and the output
sub-network runs on the centralised server. This network
would be built in such a way that it finds the optimal trade-
off between maximal performance, minimal communication
and computational overhead on the sensing nodes. Third, use
complexity reduction techniques for NN to further reduce
computational overhead on the devices [10]. Fourth, increase
the number of devices to see how well it scales with higher
numbers of devices. Fifth, compression methods can be
utilised to further reduce communication overhead.

The first avenue has potential to resolve limitation 1) and
the third avenue could effectively deal with limitation 2).
The second avenue could provide an answer to both 1)

and 2). Ideally all avenues can be combined for optimal
performance while accounting for the computing and com-
munication resource constraints at the network edge.

VI. CONCLUSION

We have shown the strength of distributing a NN to remote
devices to decrease the necessary data rate by three orders
of magnitude while only impacting performance by 10%.
This provides a strong foundation for further research in
distributing NNs onto devices to decrease network load to
solve complex JCAS tasks.

ACKNOWLEDGEMENTS

Nabeel Bhat is funded by the Fund for Scientific Research
Flanders (FWO) under grant agreement number 1SH5X24N.
Part of this research was funded by the FWO WaveVR
project (Grant number: G034322N)

REFERENCES

[1] Thorsten Wild, Volker Braun, and Harish
Viswanathan. “Joint Design of Communication
and Sensing for Beyond 5G and 6G Systems”. In:
IEEE Access 9 (2021), pp. 30845-30857.

[2] Mohamed Hany Mahmoud et al. “OpenPose-Inspired
Reduced-Complexity CSI-Based Wi-Fi Indoor Lo-
calization”. In: IEEE Commun. Lett. 28.9 (2024),
pp. 2066-2070.

[3] Hongfei Xue et al. “DeepMV: Multi-View Deep
Learning for Device-Free Human Activity Recogni-
tion”. In: Proc. ACM Interact. Mob. Wearable Ubiq-
uitous Technol. 4.1 (2020), 34:1-34:26.

[4] Yongsen Ma et al. “SignFi: Sign Language Recogni-
tion Using WiFi”. In: Proc. ACM Interact. Mob. Wear-
able Ubiquitous Technol. 2.1 (2018), 23:1-23:21.

[5] Yili Ren et al. “GoPose: 3D Human Pose Estimation
Using WiFi”. In: Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 6.2 (2022), 69:1-69:25.

[6] Yunjiao Zhou et al. “AdaPose: Towards Cross-Site
Device-Free Human Pose Estimation With Commod-
ity WiFi”. In: IEEE Internet of Things Journal (2024),
pp- 1-1.

[71 Qing Xue et al. “A Survey of Beam Management for
mmWave and THz Communications Towards 6G”. In:
IEEE Commun. Surv. Tutorials 26.3 (2024), pp. 1520—
1559.

[81 Jacopo Pegoraro et al. DISC: a dataset for integrated
sensing and communication in mmWave systems. Nov.
2022.

[91 Kaiming He et al. “Deep Residual Learning for Image
Recognition”. In: Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition. 2016, pp. 770-
778.

[10] Youssef Abadade et al. “A Comprehensive Survey on
TinyML”. In: IEEE Access 11 (2023), pp. 96892—
96922.

